MATHEMATICAL SIMULATION OF HETEROGENEOUS
ISOTROPIC SYSTEMS

G, N, Dul'nev, V. K, Kruglikov, UDC 526,2
and E. V, Sakhova

The conductivity of multicomponent isotropic heterogeneous system is studied with the help of a
computer using statistical analysis,

We will investigate an isotropic heterogeneous system consisting of different polyhedrons, whose com-
ponents fill the entire space without voids and have different transfer coefficients A;, If i = 2, then a binary
system is being examined, while for i > 2, a multicomponent heterogeneous system is being examined, In
order to study the transfer coefficients of such materials, in recent years, computer~aided statistical techniques
are widely used, which has permitted obtaining important characteristics, unified by the term theory of per-
colation or percolation processes. The general topological picture of the structure of a binary heterogeneous
system as a function of the concentration of components has become clear from the work in [1-3], Figure 1
represents a binary mixture of polyhedrons, where the dark regions have high conductivity, while the white
regions are perfect insulators, Assume that initially the entire space is filled by insulators (Fig, 1a) and, then,
a conductor is randomly disseminated into the system., A mathematical experiment on a computer, carried out
using the Monte Carlo method, showed that for low concentration my; (M indicates a metal) of the conducting
component, regions with high conductivity appear singly or as small clusters (Fig. 1b). As the system grows,
large clusters can form as well, which together with the small clusters form so-called isolated clusters (IsC).
When the concentration my; approaches a critical value mg (mp1 — m,), the large clusters begin to coalesce
with one another and giant clusters with odd shapes appear (Fig, 1¢ and f), separated from one another by 2 low
nonconducting space A—A, For m = mg, the isolated clusters coalesce and form infinite clusters (InC); the
system becomes conducting. With further growth, mp; > mg, the infinite cluster increases, absorbing small
clusters, and conducting chains permeate the entire system, forming a system with interpenetrating components
(Fig,1d), and the latter, with my=1,becomes ahomogeneous (metallic) system (Fig. le), The value m =m,, is called
the percolationthreshold, at which, in a conductor~ideal insulator system, conductivity by "hops" increases from
zero to some magnitude and then varies monotonically with increasing concentration myr. This phenomenonis called
hopping conductivity and the existence of a percolation threshold is a general phenomenon inherent both to disordered
and lattice models, The effective conductivity A of a two-component highly inhomogeneous system v = A /AM =
0, consisting of a mixture of ideal insulators and conductors with conductivities Ay and Ay, can be descrlbed
with the help of the following computer-fitted equations [3, 4]:

’ e <<m < 0,5, AlAy= A(my— mc)K,
m<<mg, AAj = 1/(1 — 5myg,
me, = 0,150,083, K=18+0,2, A=1-—1.6.

In what follows, the conductivity of inhomogeneous systems was investigated with methods in which a
computer statistical analysis was combined with different model representations, These methods are reviewed
in [5, 6], In particular, a model constructed based on a combination of the percolation method and reduction to
an elementary cell is constructed in [6]. The equations obtained permit finding with satisfactory accuracy the
conductivity of isofropic binary systems for any ratio of the conductivities of the components 0 = Ai/ Ay =1in
the entire range of variation of their concentrations 0 =m; =1 -m, =1,

The formation of an infinite cluster and the appearance of hopping conductivity have been studied quite
well using statistical methods with the help of a computer for binary media, An important problem is the
extension of this problem using the same methods to multicomponent {(two and more components) heterogeneous
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Fig, 1, Model of a binary two-dimensional inhomogeneous body: a)
myr=0; my= 1 b) my > myp, mpf < Mg; © and f) isolated clusters; d)
my = mg; e) myp = 1, mI=O.
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Fig, 2, Model of a heterogeneous system.

systems for arbitrary conductivity of the components,

We point out one more problem, which is most naturally solved by appealing to a mathematical experiment
on a computer, In determining experimentally the thermophysical properties of inhomogeneous systems or in
calculating their temperature fields, the inhomogeneous system is usually replaced by a quasihomogeneous body
with some effective properties, In so doing, it is necessary to estimate the dimensions of the so-called rep-
resentative element of the system, whose transport coefficient is approximately equal to the transport coef-
ficient of the entire mass, In what follows, we present methods for solving such problems and results of solu-
tions,

We examine first a binary heterogeneous system with a random distribution of components (Fig, 1) and we
will choose from the system some cube, in which the concentration of components equals the corresponding
concentration in the entire mass; we will assume that the lengths of the cube edges equal unity and that the
lateral surfaces of the cube are adiabatic, i.e.,
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Fig. 3. Dependence of the conductivity of 2 hinary heterogeneous
system on the number of layers in the model (a) [1) A/AM =1+1072,
m, = 0.3; 2) 1107 and 0.3; 3) 1+10~2 and 0.7; 4) 1-10~% and 0,7; 5)
1.107% and 0,9; 6) 1+10~% and 0.9] and on concentration (b).

Fig. 4. Concentration dependence of
the conductivity of a three-component
system,

while the surfaces z = 0 and z = 1 are isothermal (Fig, 2)

Qoo =1 1, = 1" (2)

The basic method for studying the conductivity through such a system is to simulate the system with the
help of a collection of connected resistances, We separate the cube being examined by planes parallel to the
base into N layers and each layer in its turn into N? parts with planes parallel to the lateral faces. Resistances
of some type are positioned between the nodes of the lattice obtained and the number of each type of resistance
is proportional to the concentration of the components (Fig, 2). With the help of a pseudorandom number
generator, the magnitude of the resistances is assigned one of two possible values. We will denote the conduc-
tivities ofthe components by A and A,,and their concentrations by m, and m, (my + m, = 1), and we will find the
overall resistance R to a flow Q between the isothermal surfaces:
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" —1
Q (3)

R=

For a single cube, the area of the isothermal surface and the height of the cube equal unity, so that the effec-
tive conductivity is A = R, If we assume that t' = 0 and t" = 1, then we obtain from (3) A=Q, i.e., the problem
reduces to determining the flux passing through the cube, We first find the magnitude of the flux Q, flowing
through the first layer, in which there are M? resistances, while M = N + 1, We denote byi=1,2,..., M?the
numbers ordering the nodes; A1 i+ M2, conductivity between neighboring nodes along the OZ axis; 8;, area per
resistance; and 8 = 1/N, th1ckness of a single layer. The magnitude of the flux Q, is given by

M2

1 .
QIZF H l\i,i-f-M2 (ti+Mz_ti) Si’ (4:)
=1

where t; ;32 and t; are the temperatures at neighboring points along the OZ axis.

In order to determine the temperature field of the model, we will write the equation for balance of heat
energy at the i-th point:

(Ao T A+ A A o+ Ao+

. (5)
+ Ai,i—Mg) Z¢i __ Ai-i,iti—i - Ai+1,iti+1 - Ai—M,i t[—M — Ai—}—M,i ti-}—M — Ai—M’,itimMz — A[—I—Mz,iti-{—MZ = 07

where A;;_y; A, arethe conductivity between neighboring points along the OY axis; A ;w2 A;rme are the
conductivity between neighboring points along the OZ axis; A;,i—m; A::rm arethe conductivity between neighbor-
ing points along the OX axis, Equation (5) can be written in a different form as follows:

M3—M? Mi—M?
t z Ayj— 2 tiA;; =0,
j=M241 j=M241
and, in addition,
j=i—L i+ 1,
Ay 5£0 for j=i—M; i+ M, (6)

j=i—M Q4 M

If Eq, (6) is written for all values of i= M?> + 1, M? + 2, ..., M® — M2, then we obtain a system of ordinary
algebraic equations, whose solution determines the temperature field of the model. According to the conditions
of the problem, for a stationary process, the flux passing through a single layer equals the flux passing through
the entire cube, The system of equations (4) and (6) was solved using the Monte Carlotechnique on an ES-1022
computer., Using the method indicated, we determined the dimensions of a representative element of a binary
heterogeneous system, For this, we calculated the effective conductivity of the A model, containing from two
to five layers, Figure 3a shows the depéndence of A = (N, v) conductivity on the number of layers N for dif-
ferent values of the ratio v = A,/A{, From the results obtained, we can draw the following conclusions:

a) the value of A,/A,; has practically no effect on the choice of the representative element;

b) the deviation of A from the limiting value (A« for N — =) increases with increasing concentration of
the nonconducting component;

¢) over the entire range of concentrations, the results obtained with the five-layer model do not deviate
from the limiting values by more than 5%, Thus, the representative element of a binary heterogeneous system
must contain at least five layers.

The conductivity of multicomponent systems was subsequently studied using the five-layer model, Figure
3b shows the results of a calculation of A for a binary system with different values of A,/A; over the entire
range of variation of concentrations 0 = m, =1 (continuous lines); the dashed lines in this figure indicate the
dependences calculated using the equations obtained by simulation, proposed by Dul'nev and Novikov [5, 6],
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The conductivity of a three-component system was investigated using the same model. The values of the
resistance of the first, second, and third types were distributed among the nodes of the model in two stages,
In the first stage, bonds were chosen for which the values of the resistances corresponding to the first com-
ponent were assigned in a random manner; the number of such bonds was determined by the volume concentra-
tion m;., At the second stage, the values of the given volume concentration of the remaining two components
were renormalized:

m,‘_ ms m, ms
2 — 3 =
1—m, 1—my ()

where mj and mj are the new values of the volume concentration of the second and third components and, in
addition, mj + m{ = 1, The values of the resistances of the second and third components were distributed
according to the values of the concentrations obtained, Figure 4 shows the results of the calculation of the
effective conductivity of a three~component system; the dashed lines indicate the values obtained from the
model representations based on a self-consistent method [7],

NOTATION

A, conductivity of the heterogeneous system; A;, conductivity of the i-th component; mj, volume concentra-
tion of the i-th component; myf and my,volume concentrations of the conducting and nonconducting (insulating)
components,
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